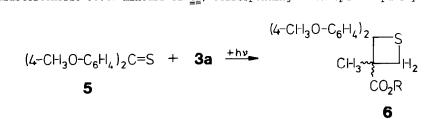

Tetrahedron Letters No. 31, pp 2879 - 2880. © Pergamon Press Ltd. 1979. Printed in Great Britain. 0040-4039/79/0729-2879802.00/0

DEPENDENCE OF THE OPTICAL INDUCTION ON THE MECHANISM OF THE PHOTOCHEMICAL THIETANE FORMATION Hans Gotthardt^{*} and Wolfgang Lenz FB 9 - Lehrstuhl fur Organische Chemie, Gesamthochschule Wuppertal, Gaußstr. 20, D-5600 Wuppertal 1, BRD

Abstract: The photochemical thietane formation from $\frac{3a}{2}$ and $\frac{1}{2}$ or $\frac{5}{2}$ proceeds with 3 to 4.5 times higher optical purity via the T_1 state of the thiones than via the S_2 state.


It has been established that xanthione (<u>1</u>) reacts upon excitation ($\lambda^{2}400 \text{ nm}$) to the S₂ state (π,π^{*} singlet) with electron-poor CC double bonds such as dimethyl maleate or fumarate via an electrocyclic [$_{\pi}^{2}_{s} + _{\pi}^{2}_{s}$] process with stereospecific formation of dimethyl *cis*- or *trans*-spiro[thietane-2,9'-xanthene]-3,4-dicarboxylate, respectively¹. On the other hand, when xanthione is irradiated with yellow light (λ =589 nm) which populates the T₁ state (n,π^{*} triplet), reactions with the same substrates lead to non-stereospecific formation of the aforementioned thretanes because of the involvement of biradical intermediates¹. In this communication we wish to report on the optical induction in this preparatively valuable thretane synthesis, using an optically active olefinic substrate, and its dependence on the above mentioned T₁- or S₂-mechanism.

Thus, $n \rightarrow \pi^*$ excitation of xanthione (<u>1</u>, 0.06 M in benzene) with yellow light (λ =589 nm) in the presence of (-)-3-menthyl methylacrylate (<u>3a</u>, 0.30 M, $[\alpha]_D^{2O} = -96.3^{\circ}$ (benzene)) proceeds with formation of diastereometric spiro[thietane-2,9'-xanthene] derivatives <u>4a</u> almost

quantitatively (oil: IR (CCl₄), 1725 cm⁻¹ (C=0); ¹H-NMR (CCl₄) δ , 0.10-1.93 (m, 21 H), 2.57, 4.05, and 2.60, 4.05 (2 AB, J = 9.6 Hz, CH₂), 6.87-7.40 (m, 6 aromatic H), 7.90-8.33 (m, 2 aromatic H)). Surprisingly, the two high-field doublets of the AB-systems appeared in the ¹H-NMR-spectrum with an area ratio of 59:41 reflecting the distribution of the diastereomeric isomers of $\frac{4}{24}$ which are formed. Alkaline hydrolysis of $\frac{4}{24}$ to the acid $\frac{4}{25}$, followed by treatment with diazomethane gave a 37% yield of the optically active methyl ester mixture $\frac{4}{2}$ which showed a specific optical rotation of $[\alpha]_D^{20} = +7.5^{\circ}$ (CCl₄). After complexation of the AB spectrum appeared as two doublets with a ratio of 58:42; therefore, after hydrolysis the ratio of the enantiomers $\frac{4}{25}$ is still the same as the initial diastereomeric mixture $\frac{4}{24}$. As expected, the NMR spectrum of racemic $\frac{4}{25}$, prepared independently from 1 and methyl methacrylate ($\frac{3}{25}$) and complexed with Eu(TFC)₃, exhibited low-field doublets in the 1:1 ratio. These results show clearly that the optical induction reaction via the triplet n, π^* -state of 1 proceeds with 17% optical purity and that the induced chirality causes the opposite optical rotation direction as the asymmetric (-)-3-menthyl initiator group.

On the other hand, $\pi \rightarrow \pi^*$ excitation of $\underline{1}$ with blue light ($\lambda^{\approx}400$ nm) in the presence of $\underline{3}\underline{a}$ yielded a diastereometric 53:47 mixture of $\underline{4}\underline{a}$, corresponding to an optical purity of 6%.

The analogous light-induced [2+2] cycloaddition reactions of 4,4'-dimethoxy thiobenzophenone ($\underline{5}$) with $\underline{3}\underline{a}$ using yellow light (n, π^* triplet) lead to formation of the optically active thietane derivative $\underline{6}\underline{a}$ in 18% optical purity, whereas with blue light (π , π^* singlet) the optical purity of $\underline{6}\underline{a}$ was only 4%. $\underline{6}\underline{a}$ (62%): IR (CCl₄), 1723 (C=O); ¹H-NMR ([D₆]acetone) δ , 0.27-2.00 (m, 21 H), 2.67, 4.20, and 2.67, 4.23 (2 AB, J = 9.0 Hz, CH₂), 3.73, 3.83 (2 s, 2 OCH₃), 4.5 (m, 1 H), 6.63-7.50 (m, 8 aromatic H).

The optical purity of the thietanes obtained via a triplet n, π^* mechanism is remarkably higher than that formed by the synchronous cycloaddition route involving the S_2 state (π, π^*) of $\underline{1}$ or $\underline{5}$. Perhaps rotation about the CC single bond in the biradical triplet intermediate of type $\underline{2}$ allows closure to the 4 membered ring to occur preferably by the lowest energy pathway and thus increases the selectivity of the reaction. The synchronous reaction pathway from the S_2 state does not involve such a rotation.

Acknowledgement. This work was supported by the Fonds der Chemischen Industrie.

REFERENCES

1. H. Gotthardt, Chem.Ber. 105, 2008 (1972).

(Received in Germany 20 April 1979)